Metabolic Regulation of the Epigenome: Chromatin Adaptation to Methyl-Metabolite Depletion

Spencer Haws
Denu Laboratory
Madison Scholars Symposium
5-8-19
Integration of Metabolism and Epigenetics

Euchromatin
“Transcriptionally Active”
H3ac, H4ac, H3K4me...

Heterochromatin
“Transcriptionally Repressive”
H3K9me, H3K27me, H4K20me...

Integration of Metabolism and Epigenetics

Table 4. Spearman’s rank correlations between plasma concentrations and dietary intakes of amino acids

<table>
<thead>
<tr>
<th>Amino Acids</th>
<th>Sample size</th>
<th>r</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branched-chain essential amino acids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoleucine</td>
<td>392</td>
<td>0.10</td>
<td>0.05</td>
</tr>
<tr>
<td>Leucine</td>
<td>392</td>
<td>0.16</td>
<td>0.001</td>
</tr>
<tr>
<td>Valine</td>
<td>392</td>
<td>0.14</td>
<td>0.01</td>
</tr>
<tr>
<td>Other essential amino acids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histidine</td>
<td>392</td>
<td>-0.02</td>
<td>0.7</td>
</tr>
<tr>
<td>Lysine</td>
<td>381</td>
<td>0.21</td>
<td><0.0001</td>
</tr>
<tr>
<td>Methionine</td>
<td>392</td>
<td>0.19</td>
<td>0.0002</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>299</td>
<td>0.05</td>
<td>0.4</td>
</tr>
<tr>
<td>Threonine</td>
<td>392</td>
<td>0.06</td>
<td>0.2</td>
</tr>
<tr>
<td>Tryptophan</td>
<td>390</td>
<td>0.16</td>
<td>0.001</td>
</tr>
<tr>
<td>Non-essential amino acids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alanine</td>
<td>392</td>
<td>-0.05</td>
<td>0.4</td>
</tr>
<tr>
<td>Arginine</td>
<td>392</td>
<td>0.09</td>
<td>0.07</td>
</tr>
<tr>
<td>Aspartate</td>
<td>392</td>
<td>0.004</td>
<td>0.9</td>
</tr>
<tr>
<td>Glutamate</td>
<td>392</td>
<td>0.03</td>
<td>0.6</td>
</tr>
<tr>
<td>Glycine</td>
<td>392</td>
<td>-0.15</td>
<td>0.003</td>
</tr>
<tr>
<td>Proline</td>
<td>347</td>
<td>0.12</td>
<td>0.02</td>
</tr>
<tr>
<td>Serine</td>
<td>392</td>
<td>0.04</td>
<td>0.4</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>392</td>
<td>0.17</td>
<td>0.0007</td>
</tr>
</tbody>
</table>

*Conventional P-values are shown and those marked in bold were significant after Bonferroni correction (P < 0.0029).

Modified from Schmidt et al. (2015) EJCN.
Integration of Metabolism and Epigenetics

Table 4. Spearman’s rank correlations between plasma concentrations and dietary intakes of amino acids

<table>
<thead>
<tr>
<th>Sample size</th>
<th>r</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branched-chain essential amino acids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoleucine</td>
<td>392</td>
<td>0.10</td>
</tr>
<tr>
<td>Leucine</td>
<td>392</td>
<td>0.16</td>
</tr>
<tr>
<td>Valine</td>
<td>392</td>
<td>0.14</td>
</tr>
<tr>
<td>Other essential amino acids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histidine</td>
<td>392</td>
<td>−0.02</td>
</tr>
<tr>
<td>Lysine</td>
<td>381</td>
<td>0.21</td>
</tr>
<tr>
<td>Methionine</td>
<td>392</td>
<td>0.19</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>299</td>
<td>0.05</td>
</tr>
<tr>
<td>Threonine</td>
<td>392</td>
<td>0.06</td>
</tr>
<tr>
<td>Tryptophan</td>
<td>390</td>
<td>0.16</td>
</tr>
<tr>
<td>Non-essential amino acids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alanine</td>
<td>392</td>
<td>−0.05</td>
</tr>
<tr>
<td>Arginine</td>
<td>392</td>
<td>0.09</td>
</tr>
<tr>
<td>Aspartate</td>
<td>392</td>
<td>0.004</td>
</tr>
<tr>
<td>Glutamate</td>
<td>392</td>
<td>0.03</td>
</tr>
<tr>
<td>Glycine</td>
<td>392</td>
<td>−0.15</td>
</tr>
<tr>
<td>Proline</td>
<td>347</td>
<td>0.12</td>
</tr>
<tr>
<td>Serine</td>
<td>392</td>
<td>0.04</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>392</td>
<td>0.17</td>
</tr>
</tbody>
</table>

*Conventional P-values are shown and those marked in bold were significant after Bonferroni correction (P < 0.0029).

Modified from Schmidt et al. (2015) EJCN.

Heterochromatin
“Transcriptionally Repressive”
H3K9me, H3K27me, H4K20me...

Euchromatin
“Transcriptionally Active”
H3ac, H4ac, H3K4me...

SAM Depletion Leads to Decreased Histone Methylation Abundance

Gap in the Field: All current studies focus on PTM susceptibility to methyl-metabolite depletion.

Project Focus: Identify and characterize adaptive chromatin responses to methyl-metabolite depletion.

Kera et al. (2013) *J. Biol. Chem.*
Initial Experimental Approach
Methyl-Metabolite Depletion Stimulates Conserved Epigenetic Response

Histone methylation dynamically responds to methyl-metabolite depletion.
H3K9 Mono-methylation is an Adaptive Response to Methyl-Metabolite Depletion
H3K9me1 is a Prominent Pre-Deposition Histone PTM

Rivera et al. (2015) NAR.

H3K9 Mono-methylation is an Adaptive Response to Methyl-Metabolite Depletion

H3K9me1 is actively maintained in response to methyl-metabolite depletion… but why?
H3K9me1 is Required to Support Constitutive Heterochromatin

Approaches for Investigating Heterochromatin Stability

MNase Accessibility Assay

[Diagram showing the MNase Accessibility Assay]
Approaches for Investigating Heterochromatin Stability

MNase Accessibility Assay

Transcript Abundance of Constitutively Repressed DNA Elements

Saksouk et al. (2015) *Epigenetics and Chromatin*.
Global Heterochromatin Instability is Exacerbated by Inhibition of H3K9 Mono-methylation

UNC0642

A

B

% of Total Nucleosome Species

0hr
24hr MR DMSO
24hr MR UNC0642

pentα
tetra-
tri-
di-
mono-

735bp
588bp
441bp
294bp
147bp
De-repression of Repetitive and Retrotransposable DNA Elements is also Exacerbated by Inhibition of H3K9 Mono-Methylation

Active H3K9 mono-methylation is required to preserve global and site-specific heterochromatin stability.
Proposed Model of Chromatin Adaptation to SAM Depletion

- SAM producing and consuming pathways dictate histone methylation profiles.

- *De novo* methylation of H3K9me1 is an adaptive epigenetic response to methyl-donor depletion.

- *De novo* H3K9me1 attenuates losses in heterochromatin stability.

- Epigenetic persistence to metabolic stress requires an active chromatin response.
Experimental Approach for \textit{in vivo} Validation

Analyses Performed

A. Histone proteomics

B. DNA element mRNA abundance

C. In vivo metabolic tests
 A. GTT
 B. MRI
Epigenetic Adaptation and Persistence to Diet-Induced SAM Depletion is Conserved Across the Lifespan
Epigenetic Adaptation and Persistence to Diet-Induced SAM Depletion is Conserved Across the Lifespan
Proposed Model of Chromatin Adaptation to SAM Depletion

- SAM producing and consuming pathways dictate histone methylation profiles.

- *De novo* methylation of H3K9me1 is an adaptive epigenetic response to methyl-donor depletion.

- *De novo* H3K9me1 attenuates losses in heterochromatin stability.

- Epigenetic persistence to metabolic stress requires an active chromatin response.

- Epigenetic adaptation to methyl-donor depletion are conserved across the lifespan.
Acknowledgments

Mentor
John Denu

Lab Members
Eric Armstrong
Laura Borth
Mitchell Carlson
Ann Denu
Rush Dhillon
James Dowell
Mark Klein
Slava Kuznetsov
Alexis Lawton
Morgan Lentz
Anastasia Lindahl
Wallace Liu
Lily Miller
Sydney Thomas
Yiming Qin

Past Lab Members
Josue Baeza
Jing Fan
Jin-Hee Lee
Kimberly Krautkramer
Michael Smallegan
Zhangli Su

Collaborators
Vincent Cryns: UW-Madison
Dudley Lamming: UW-Madison
Kazuhiko Igarashi: Tohoku University
Benjamin Tu: UTSW

Committee Members
Rozalyn Anderson
Rick Eisenstein
Dave Pagliarini
Rupa Sridharan

Funding/ Support:
NIH T32
DK007665